

महाराष्ट्र शासन
शालेय शिक्षण व क्रीडा विभाग

राज्य शैक्षणिक संशोधन व प्रशिक्षण परिषद, महाराष्ट्र
७०८ सदाशिव पेठ, कुमठेकर मार्ग, पुणे ४११०३०

Question Bank

Standard :- $10^{\text {th }}$

Subject :- Mathematics Part 2

सूचना

१. फक्त विद्यार्थ्यांना प्रश्नप्रकारांचा सराव करून देण्यासाठीच
२. सदर प्रश्नसंचातील प्रश्न बोर्डाच्या प्रश्नपत्रिकेत येतीलच असे नाही याची नोंद घ्यावी.

Class-10

Mathematics part-2

Question bank

1.Similarity

Q. 1 A) MCQ (1 Mark)

1.If $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ and $\mathrm{AB}: \mathrm{PQ}=3: 4$ then $\mathrm{A}(\triangle \mathrm{ABC}): \mathrm{A}(\triangle \mathrm{PQR})=$?
(A)9:25
(B) 9:16
(C) $16: 9$
(D) $25: 9$
2.Which of the following is not a test of similarity?
(A)AAA
(B)SAS
(C) SAA
(D)SSS
3.If $\triangle \mathrm{XYZ} \sim \Delta \mathrm{PQR}$ and $\mathrm{A}(\Delta \mathrm{XYZ})=25 \mathrm{~cm}^{2}, \mathrm{~A}(\Delta \mathrm{PQR})=4 \mathrm{~cm}^{2}$ then $\mathrm{XY}: \mathrm{PQ}=$?
(A) $4: 25$
(B)2:5
(C) $5: 2$
(D) $25: 4$
4.Ratio of areas of two similar tringles is 9:25. \qquad is the ratio of their corresponding sides.
(A) $3: 4$
(B) $3: 5$
(C) $5: 3$
(D)25:81
5. Given $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$, if $\angle \mathrm{A}=45^{\circ}$ and $\angle \mathrm{E}=35^{\circ}$ then $\angle \mathrm{B}=$?
(A) 45°
(B) 35°
(C) 25°
(D) 40°
6. In fig,seg $D E \|$ seg $B C$, identify correct statement.
(A) $\frac{A D}{D B}=\frac{A E}{A C}$
(B) $\frac{A D}{D B}=\frac{A B}{A C}$
(C) $\frac{A D}{D B}=\frac{E C}{A C}$
(D) $\frac{A D}{D B}=\frac{A E}{E C}$

7.If $\triangle X Y Z \sim \Delta P Q R$ then $\frac{X Y}{P Q}=\frac{Y Z}{Q R}=$?
(A) $\frac{X Z}{P R}$
(B) $\frac{\mathrm{XZ}}{\mathrm{PQ}}$
(C) $\frac{\mathrm{XZ}}{\mathrm{QR}}$
(D) $\frac{\mathrm{YZ}}{\mathrm{PQ}}$
8. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{LMN}$ and $\angle \mathrm{A}=60^{\circ}$ then $\angle \mathrm{L}=$?
(A) 45°
(B) 60°
(C) 25°
(D) 40°
9. In $\quad \Delta \mathrm{DEF}$ and $\Delta \mathrm{XYZ} \quad, \frac{\mathrm{DE}}{\mathrm{XY}}=\frac{\mathrm{FE}}{\mathrm{YZ}} \quad \& \angle \mathrm{E} \cong \angle \mathrm{Y}$ \qquad test gives similarity between $\triangle \mathrm{DEF} \& \Delta \mathrm{XYZ}$.
(A)AAA (B)SAS
(C) SAA (D)SSS

10. In fig $B D=8, B C=12 \quad B-D-C$ then $\quad \frac{A(\Delta A B C)}{A(\triangle A B D)}=$?
(A)2:3
(B)3:2
(C) $5: 3$
(D)3:4

Q. 1 B)

Solve
1 mark
B. 1 Are triangles in figure similar ? If yes then write the test of similarity.

2. In fig line $B C \|$ line $D E, A B=2, B D=3, A C=4$ and $C E=x$, then find the value of x.

3.State whether the following triangles are similar or not : If yes, then write the test of similarity.

4. If $\triangle \mathrm{ABC} \sim \Delta \mathrm{LMN} \& \angle \mathrm{~B}=40^{\circ}$ then $\angle \mathrm{M}=$? Give reason.
5.Areas of two simlar triangles are in the ratio 144:49. Find the ratio of their corresponding sides.
6. $\triangle \mathrm{PQR} \sim \Delta \mathrm{SUV}$ write pair of congruent angle.
7. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ write ratio of their corresponding sides.
8.

9.Ratio of corresponding sides of two similar triangles is $4: 7$ then find the ratio of their areas $=$?
10. Write the test of similarity for triangles given in figure.

Q. 2 A.Complete the activity 2 marks

1.

 in fig. $B P \perp A C, C Q \perp A B \quad A-P-C$ \& A-Q-B then show that $\triangle A P B \& \triangle A Q C$ are similar

B C In $\quad \triangle \mathrm{APB} \& \triangle \mathrm{AQC} \quad \angle \mathrm{APB}=[]^{0} \ldots(I)$ $\angle \mathrm{AQC}=[]^{0} \ldots(I I)$ $\angle \mathrm{APB} \cong \angle \mathrm{AQC}$ (I) $\&(\mathrm{II})$
$\angle \mathrm{PAB} \cong \angle \mathrm{QAC}[.$.
$\Delta \mathrm{APB} \sim \Delta \mathrm{AQC} \quad[.$.
2.Observe the figure \& complete following activity.

$$
\begin{aligned}
& \text { in } \mathrm{fig} \angle \mathrm{~B}=75^{\circ}, \angle \mathrm{D}=75^{\circ} \\
& \angle \mathrm{B} \cong[\ldots .] \quad \text { each of } 75^{\circ} \\
& \angle \mathrm{C} \cong \angle \mathrm{C} \quad[\ldots .] \\
& \Delta \mathrm{ABC} \sim \Delta[\ldots \ldots . .]
\end{aligned}
$$

....[.....]similarity test
3. $\Delta \mathrm{ABC} \sim \triangle \mathrm{PQR}, \mathrm{A}(\triangle \mathrm{ABC})=80 \mathrm{sqcm} \quad \mathrm{A}(\triangle \mathrm{PQR})=125 \mathrm{sqcm} \quad$ then complete
$\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\Delta \mathrm{PQR})}=\frac{80}{125}=\frac{[\ldots]}{[\ldots]}$ hence $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{[\ldots .]}{[\ldots .]}$
4.in fig. $P M=10 \mathrm{~cm} \quad A(\Delta P Q S)=100 \mathrm{sqcm} A(\Delta Q R S)=110 \mathrm{sqcm}$ then $N R$?

$\Delta \mathrm{PQS} \& \Delta \mathrm{QRS}$ having seg QS common base
Areas of two triangles whose base are common, are in proportion of their corresponding [......]
$\frac{\mathrm{A}(\Delta \mathrm{PQS})}{\mathrm{A}(\Delta \mathrm{QRS})}=\frac{[\ldots]}{\mathrm{NR}}, \frac{100}{110}=\frac{[\ldots]}{\mathrm{NR}}, \mathrm{NR}=[\ldots .]$.

2. In fig seg $A C \&$ seg $B D$ intersect each other at point p

$$
\frac{A P}{P C}=\frac{B P}{P D} \text { then prove that } \triangle A B P \sim \triangle D P C
$$

3. $\Delta \mathrm{ABP} \sim \Delta \mathrm{DEF}$ \& $\mathrm{A}(\Delta \mathrm{ABP}): \mathrm{A}(\Delta \mathrm{DEF})=144: 81$ then $\mathrm{AB}: \mathrm{DE}=$?
4. From given information is $P Q \| B C$?

$$
A P=2, P B=4 \quad A Q=3, Q C=6
$$

B
C
5. Areas of two similar triangles are $225 \mathrm{~cm}^{2}$ and, $81 \mathrm{~cm}^{2}$ if side of smaller triangle is 12 cm . find corresponding side of major triangle
6.

from adjoining figure

$$
\begin{gathered}
\angle \mathrm{ABC}=90^{\circ} \angle \mathrm{DCB}=90^{\circ} \mathrm{AB}=6, \\
\mathrm{DC}=8 \text { then } \frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{BCD})}=?
\end{gathered}
$$

Q.3A) Complete the following activity 3 marks

1. $\triangle A B C$ APpendicular $B C \& B Q$ perpendicular $A C, B-P-C, A-Q-C$ then show that $\triangle C P A \sim \triangle C Q B$ if $A P=7, B Q=8 B C=12$ then $\mathrm{AC}=$? In $\triangle \mathrm{CPAand} \triangle \mathrm{CQB} \angle \mathrm{CPA} \cong[<\ldots]$.(each 90°)
$\angle \mathrm{ACP} \cong[\angle \ldots]$.(common angle)
Δ CPA~ \triangle CQB (..........similarity test)
$\frac{A P}{B Q}=\frac{[\ldots]}{B C} \quad$ (corresponding sides of similar triangle)
$\frac{7}{8}=\frac{[\ldots]}{12}$
$A C x[\ldots .]=.7 \times 12 \quad A C=10.5$
2. A line is parallel to one side ot triangle which intersects remaining two sides in two distinct point then that line divdes sides in same proportion.

Given : In $\triangle A B C$ line l II side $B C$ \& line l intersect side $A B$ in $P \&$ side
$A C$ in $Q \quad A$

$$
\begin{align*}
& \text { Given: } \frac{A P}{P B}=\frac{A Q}{Q C} \quad \text { construction :draw } C P \& B Q \\
& \text { Proof: } \triangle \mathrm{APQ} \& \triangle \mathrm{PQB} \text { have equal } \\
& \text { height } \\
& \frac{\mathrm{A}(\triangle \mathrm{APQ})}{\mathrm{A}(\triangle \mathrm{PQB})}=\frac{[\ldots]}{\mathrm{PB}} \text { (areas in proportion of base) } \\
& \frac{\mathrm{A}(\triangle \mathrm{APQ})}{\mathrm{A}(\triangle \mathrm{PQC})}=\frac{[\ldots .]}{\mathrm{QC}} \text { (areas in proportion of basell } \\
& \triangle P Q C \& \triangle P Q B \text { have [.....]is common base } \\
& \text { SegPQ II Seg BC hence height of: } \\
& \triangle A P Q \& \Delta P Q B \\
& A(\triangle \mathrm{PQC})=\mathrm{A}\left(\Delta_{\ldots}\right) . \tag{III}\\
& \frac{\mathrm{A}(\Delta \mathrm{APQ})}{\mathrm{A}(\Delta \mathrm{PQB})}=\frac{\mathrm{A}(\Delta \ldots \ldots)}{\mathrm{A}(\Delta \ldots \ldots} \tag{I}\\
& \frac{A P}{P B}=\frac{A Q}{Q C} \\
& \text { [(I) \& (II) }
\end{align*}
$$

From fig.seg PQ II side BC

$A P=x+3, P B=x-3, A Q=x+5, Q C=x-2$
3.

then complete the activity to find the value of x
in $\triangle P Q B, P Q$ II side $B C$
$\frac{A P}{P B}=\frac{A Q}{[\ldots]}$
$\frac{x+3}{x-3}=\frac{x+5}{[\ldots]}$
$(x+3)[\ldots . .]=.(x+5)(x-3)$
$x^{2}+\mathrm{x}-[\ldots .]=.x^{2}+2 \mathrm{x}-15$
$x=[\ldots$.

Q. 3 B 3 marks

1. There are two poles having heights $8 \mathrm{~m} \& 4 \mathrm{~m}$ on plane ground as shown in fig. Because of sunlight shadow of smaller pole is 6 m long then find the length of shadow of longer pole.
2.In $\triangle A B C \quad B-D-C \& B D=7, B C=20$ then find the following ratio

1) $\frac{A(\triangle A B D)}{A(\triangle A D C)}$
2) $\frac{A(\triangle A B D)}{A(\triangle A B C)}$
3) $\frac{A(\triangle A D C)}{A(\triangle A B C)}$

3. In given fig.quadrilateral $P Q R S$ side $P Q I \|$ side $S R, A R=5 A P$, then prove that, $\quad S R=5 P Q$
4.

In triangle $A B C$ point D is on side $B C$ ($B-D-C$) such that $\angle B A C=\angle A D C$ then prove that $C A^{2}=C B x C D$
5.

In Quadrlateral ABCD Side AD II BC diagonal AC \& $B D$ intersct in point P then prove that $\frac{A P}{P D}=\frac{P C}{B P}$

Q. 44 marks

1. Side of eqilateral triangle $P Q R$ is 8 cm then find the area of triangle whose side is half of side of triangle PQR
2.Areas of two similar triangle are equal then prove that triangles are congruent 3.Two triangles are similar .Smaller triangle sides are $4 \mathrm{~cm}, 5 \mathrm{~cm}, 6 \mathrm{~cm}$ perimter of larger triangle is 90 cm then find the sides of larger triangle.

Q. 53 marks

1. In fig, $P S=2, S Q=6 Q R=5, P T=x \& T R=y$. then find the pair of value of $x \& y$ such that ST II side QR.

2 .An architecture have model of building, length of building is 1 m then length of model is 0.75 cm then find length $\&$ height of model building whose actual length is $22.5 \mathrm{~m} \&$ heght is 10 m .

2. PYTHAGORAS THEOREM

Que. 1 (A). Choose the correct alternative from those given below

(1 mark each)

1. Out of given triplets, which is a Pythagoras triplet ?
(A) $(1,5,10)$
(B) $(3,4,5)$
(C) $(2,2,2)$
(D) $(5,5,2)$
2. Out of given triplets, which is not a Pythagoras triplet?
(A) $(5,12,13)$
(B) $(8,15,17)$
(C) $(7,8,15)$
(D) $(24,25,7)$
3. Out of given triplets, which is not a Pythagoras triplet?
(A) $(9,40,41)$
(B) $(11,60,61)$
(C) $(6,14,15)$
(D) $(6,8,10)$
4. In right angled triangle, if sum of square of sides of right angle is 169 then what is the length of hypotenuse?
(A) 15
(B) 13
(C) 5
(D) 12
5. A rectangle having length of a side is 12 and length of diagonal is 20 then what is length of other side?
(A)2
(B) 13
(C) 5
(D) 16
6. If the length of diagonal of square is $\sqrt{2}$ then what is the length of each side?
(A)2
(B) $\sqrt{3}$
(C) 1
(D) 4
7. If length of both diagonals of rhombus are 60 and 80 then what is the length of side?
(A) 100
(B) 50
(C) 200
(D) 400
8. If length of sides of triangle are a, b, c and $a^{2}+b^{2}=c^{2}$ then which type of triangle it is?
(A)Obtuse angled triangle
(B) Acute angled triangle
(C) Equilateral triangle
(D)Right angled triangle
9. In $\triangle \mathrm{ABC}, \mathrm{AB}=6 \sqrt{3} \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$, and $\mathrm{BC}=6 \mathrm{~cm}$ then $\mathrm{m} \angle \mathrm{A}$ $=$?
(A) 30^{0}
(B) 60^{0}
(C) 90^{0}
(D) 45^{0}
10. The diagonal of a square is $10 \sqrt{2} \mathrm{~cm}$ then its perimeter is \qquad .
(A) 10 cm .
(B) $40 \sqrt{2} \mathrm{~cm}$.
(C) 20 cm .
(D) 40 cm .
11. Out of all numbers from given dates, which is a Pythagoras triplet ?
(A) 15/8/17
(B) 16/8/16
(C) $3 / 5 / 17$
(D) $4 / 9 / 15$

Que. 1 (B). Solve the following questions : (1 mark each)

1.Height and base of a right angled triangle are 24 cm and 18 cm find the length of its hypotenus?
2. From given figure, In $\triangle \mathrm{ABC}, \mathrm{AB} \perp \mathrm{BC}, \mathrm{AB}=\mathrm{BC}$ then $\mathrm{m} \angle \mathrm{A}=$?

3. From given figure, In $\triangle A B C, A B \perp B C, A B=B C, A C=2 \sqrt{2}$ then $l(A B)=$?

$$
\text { B } \quad \text { C }
$$

4. From given figure, In $\triangle \mathrm{ABC}, \mathrm{AB} \perp \mathrm{BC}, \mathrm{AB}=\mathrm{BC}, \mathrm{AC}=5 \sqrt{2}$ then what is the height of $\triangle \mathrm{ABC}$?

5. Find the height of an equilateral triangle having side 4 cm . ?
6. From given figure, In $\Delta \mathrm{ABQ}$, If $\mathrm{AQ}=8 \mathrm{~cm}$. then $\mathrm{AB}=$?

7. In right angled triangle, if length of hypotenuse is 25 cm . and height is 7 cm . then what is the length of its base ?
8. If a triangle having sides $50 \mathrm{~cm} ., 14 \mathrm{~cm}$, and 48 cm ., then state wheather given triangle is right angled triangle or not.
9. If a triangle having sides $8 \mathrm{~cm} ., 15 \mathrm{~cm}$., and 17 cm ., then state wheather given triangle is right angled triangle or not.
10. A rectangle having dimensions 35 mX 12 m , then what is the length of its diagonal?

Que. 2 (A). Complete the following activities (2 marks each)

* (Write complete answers, don't just fill the boxes)

1. From given figure, In $\triangle \mathrm{ABC}$, If $\mathrm{AC}=12 \mathrm{~cm}$. then $\mathrm{AB}=$?

Activity : From given figure, In $\Delta \mathrm{ABC}, \angle \mathrm{ABC}=90^{\circ}, \angle \mathrm{ACB}=30^{\circ}$
$\therefore \angle \mathrm{BAC}=$ \square
$\therefore \triangle \mathrm{ABC}$ is $30^{\circ}-60^{\circ}-90^{\circ} \Delta$.
\therefore In $\triangle \mathrm{ABC}$ by Property of $30^{\circ}-60^{\circ}-90^{\circ} \Delta$.

$$
\begin{aligned}
& \therefore \mathrm{AB}=\frac{1}{2} \mathrm{AC} \text { and } \square=\frac{\sqrt{3}}{2} \mathrm{AC} . \\
& \therefore \square=\frac{1}{2} \times 12 \text { And } \mathrm{BC}=\frac{\sqrt{3}}{2} \times 12 \\
& \therefore \quad \square=6 \text { व } \mathrm{BC}=6 \sqrt{3} .
\end{aligned}
$$

2. From given figure, In $\triangle A B C, A D \perp B C$, then prove that $\mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}$ by completing activity.

Activity : From given figure, In $\triangle \mathrm{ABC}$, By pythagoras theorem

$$
\mathrm{AC}^{2}=\mathrm{AD}^{2}+\square
$$

$\therefore \mathrm{AD}^{2}=\mathrm{AC}^{2}$
CD^{2}

Also, In $\triangle \mathrm{ABD}$, by pythagoras theorem,

$$
\begin{align*}
& \mathrm{AB}^{2}=\square+\mathrm{BD}^{2} \\
& \therefore \mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2} \ldots \ldots \ldots \tag{II}
\end{align*}
$$

$$
\begin{aligned}
& \therefore \quad \square \quad-\mathrm{BD}^{2}=\mathrm{AC}^{2}-\square \\
& \therefore \quad \mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}
\end{aligned}
$$

3. From given figure, In $\triangle \mathrm{ABC}$, If $\angle \mathrm{ABC}=90^{\circ} \angle \mathrm{CAB}=30^{\circ}$, $\mathrm{AC}=$ 14 then for finding value of AB and BC , complete the following activity.

Activity : In $\triangle \mathrm{ABC}$, If $\angle \mathrm{ABC}=90^{\circ} \angle \mathrm{CAB}=30^{\circ}$

$$
\therefore \angle \mathrm{BCA}=
$$

\square

By theorem of $30^{\circ}-60^{\circ}-90^{\circ} \Delta^{\mathrm{le}}$,
$\therefore=\frac{1}{2} \mathrm{AC} \quad$ and $\square=\frac{\sqrt{3}}{2} \mathrm{AC}$
$\therefore \mathrm{BC}=\frac{1}{2} \times \square \& \mathrm{AB}=\frac{\sqrt{3}}{2} \times 14$
$\therefore \mathrm{BC}=7 \quad \& \quad \mathrm{AB}=7 \sqrt{3}$.
4. From given figure, In $\Delta \mathrm{MNK}$, If $\angle \mathrm{MNK}=90^{\circ} \angle \mathrm{M}=45^{\circ}$, $\mathrm{MK}=6$ then for finding value of MK and KN , complete the following activity.

Activity : In $\triangle \mathrm{MNK}$, If $\angle \mathrm{MNK}=90^{\circ} \angle \mathrm{M}=45^{\circ} \ldots$ (given)
$\therefore \angle \mathrm{K}=\square \quad \ldots$ (remaining angles of $\triangle \mathrm{MNK}$)
By theorem of $45^{0}-45^{0}-90^{\circ} \Delta^{\mathrm{le}}$,
$\therefore=\frac{1}{\sqrt{2}} \mathrm{MK}$ and $\square=\frac{1}{\sqrt{2}} \mathrm{MK}$
$\therefore \mathrm{MN}=\frac{1}{\sqrt{2}} \times \square \quad \& \quad \mathrm{KN}=\frac{1}{\sqrt{2}} \times 6$
$\therefore \mathrm{MN}=3 \sqrt{2}$. \& $\mathrm{KN}=3 \sqrt{2}$.
5. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from the base of wall. Complete the given activity.

Activity : as shown in fig. suppose

PR is the length of ladder $=10 \mathrm{~m}$
At P - window, At Q - base of wall, At R - foot of ladder
$\therefore \mathrm{PQ}=6 \mathrm{~m}$
$\therefore \mathrm{QR}=$?

In $\triangle \mathrm{PQR}, \mathrm{m} \angle \mathrm{PQR}=90^{\circ}$

By Pythagoras Theorem,
$\therefore \mathrm{PQ}^{2}+\square=\mathrm{PR}^{2} \ldots \ldots$ (I)
Here, $\mathrm{PR}=10, \mathrm{PQ}=$ \qquad
From equation (I)
$8^{2}+\mathrm{QR}^{2}=10^{2}$
$\mathrm{QR}^{2}=10^{2}-8^{2}$
$\mathrm{QR}^{2}=100-64$
$\mathrm{QR}^{2}=$

QR $=6$
\therefore The distance of foot of the ladder from the base of wall is 6 m .
6. From the given figure, In $\triangle \mathrm{ABC}$, If $\mathrm{AD} \perp \mathrm{BC}, \angle \mathrm{C}=45^{\circ}, \mathrm{AC}=$ $8 \sqrt{2}, \mathrm{BD}=5$ then for finding value of AD and BC , complete the following activity.

D
Activity: In $\triangle \mathrm{ADC}$, If $\angle \mathrm{ADC}=90^{\circ} \angle \mathrm{C}=45^{\circ} \ldots$ (given)
$\therefore \angle \mathrm{DAC}=\square \ldots$ (remaining angles of $\triangle \mathrm{ADC}$)
By theorem of $45^{0}-45^{0}-90^{\circ} \Delta^{\mathrm{le}}$,
$\therefore=\frac{1}{\sqrt{2}} \mathrm{AC}$ and $\square=\frac{1}{\sqrt{2}} \mathrm{AC}$ $\therefore \mathrm{AD}=\frac{1}{\sqrt{2}} \times \square \& \mathrm{DC}=\frac{1}{\sqrt{2}} \times 8 \sqrt{2}$
$\therefore \mathrm{AD}=8 \quad \& \quad \mathrm{DC}=8$
$\therefore \mathrm{BC}=\mathrm{BD}+\mathrm{DC}=5+8=13$
7. Complete the following activity to find the length of hypotenuse of right angled triangle, if sides of right angle are 9 cm and 12 cm .

Activity: In $\triangle \mathrm{PQR}, \mathrm{m} \angle \mathrm{PQR}=90^{\circ}$

By Pythagoras Theorem,
$\therefore \mathrm{PQ}^{2}+\square=\mathrm{PR}^{2} \ldots \ldots$ (I)
$\therefore \mathrm{PR}^{2}=9^{2}+12^{2}$
$\therefore \mathrm{PR}^{2}=\square+144$
$\therefore \mathrm{PR}^{2}=\square$
$\therefore \mathrm{PR}=15$
\therefore Length hypotenuse of triangle PQR is \square cm .
8. From given figure, In $\Delta \mathrm{PQR}$, If $\angle \mathrm{QPR}=90^{\circ}, \mathrm{PM} \perp \mathrm{QR}, \mathrm{PM}=$ $10, \mathrm{QM}=8$ then for finding the value of QR , complete the following activity.

Activity : In $\triangle \mathrm{PQR}$, If $\angle \mathrm{QPR}=90^{\circ}$, $\mathrm{PM} \perp \mathrm{QR}$, \qquad (given)

In \triangle PMQ, By Pythagoras Theorem,
$\therefore \mathrm{PM}^{2}+$ \square $=P Q Q^{2}$
$\therefore \mathrm{PQ}^{2}=10^{2}+8^{2}$
$\therefore \mathrm{PQ}^{2}=\square+64$
$\therefore \mathrm{PQ}^{2}=$ \square
$\therefore \mathrm{PQ}=\sqrt{164}$
Here, $\Delta \mathrm{QPR} \sim \Delta \mathrm{QMP} \sim \Delta \mathrm{PMR}$
$\therefore \Delta \mathrm{QMP} \sim \Delta \mathrm{PMR}$

$$
\begin{aligned}
& \therefore \frac{\mathrm{PM}}{\mathrm{RM}}=\frac{\mathrm{QM}}{\mathrm{PM}} \\
& \therefore \mathrm{PM}^{2}=\mathrm{RM} \mathrm{X} \mathrm{QM} \\
& \therefore 10^{2}=\mathrm{RM} \mathrm{X} 8 \\
& \mathrm{RM}=\frac{100}{8}=\square
\end{aligned}
$$

And,

$$
\begin{aligned}
& \mathrm{QR}=\mathrm{QM}+\mathrm{MR} \\
& \mathrm{QR}=\square+\frac{25}{2}=\frac{41}{2}
\end{aligned}
$$

9. Find the diagonal of a rectangle whose length is 16 cmand area is 192sq.cm. Complete the following activity.

Activity :

As shown in fig.LMNT is rectangle
\therefore Area of rectangle $=$ length X breadth
\therefore Area of rectangle $=$ \square X breadth
$\therefore 192=$ \qquad X breadth
\therefore Breadth $=12 \mathrm{~cm}$.
Also, $\angle \mathrm{TLM}=90^{\circ} \ldots .$. (each angle of rectangle is right angle $)$
In $\Delta T L M$, By Pythagoras theorem
$\therefore \mathrm{TM}^{2}=\mathrm{TL}^{2}+$ \square
$\therefore \mathrm{TM}^{2}=12^{2}+\square$
$\therefore \mathrm{TM}^{2}=144+$ \square
$\therefore \mathrm{TM}^{2}=400$
$\therefore \mathrm{TM}=20$
10. In $\Delta \mathrm{LMN}, \mathrm{l}=5, \mathrm{~m}=13, \mathrm{n}=12$ then complete the activity to show that wheather given traingle is right angled traingle or not.

* ($1, \mathrm{~m}, \mathrm{n}$ are opposite sides of $\angle \mathrm{L}, \angle \mathrm{M}, \angle \mathrm{N}$ respectively)

Activity :

In $\Delta \mathrm{LMN}$ मध्ये, $\mathrm{l}=5, \mathrm{~m}=13, \mathrm{n}=$ \square
$\therefore 1^{2}=\square ; \quad \mathrm{m}^{2}=169 ; \quad \mathrm{n}^{2}=144$.
$\therefore 1^{2}+\mathrm{n}^{2}=25+144=\square$
$\therefore \quad \square+1^{2}=\mathrm{m}^{2}$
\therefore By Converse of Pythagoras theorem, $\Delta \mathrm{LMN}$ is right angled triangle.

Que. 3 (B). Solve the following questions : (3 marks each)

1. As shwon in figure, $\angle \mathrm{DFE}=90^{\circ}$, $\mathrm{FG} \perp \mathrm{ED}$, If $\mathrm{GD}=8, \mathrm{FG}=12$, then (1) $\mathrm{EG}=$? (2) $\mathrm{FD}=$? (3) $\mathrm{EF}=$?

2. A congruent side of an isosceles right angled triangle is 7 cm ,Find its perimetre .

Que. 4. Solve the following questions: (Challenging question 4 marks each)

1. As shwon in figure, $\mathrm{LK}=6 \sqrt{2}$ then 1) $\mathrm{MK}=? 2) \mathrm{ML}=$? 3) MN $=$?

3 Circle.

Q.1. Four alternative answers for each of the following questions are given.

 Choose the correct alternative.1) Two circles intersect each other such that each circle passes through the centre of the other. If the distance between their centres is 12 , what is the radius of each circle?
(A) 6 cm
(B) 12 cm
(C) 24 cm
(D) can’t say
2) A circle touches all sides of a parallelogram. So the parallelogram must be a,
(A) rectangle
(B) rhombus
(C) square
(D) trapezium
3) $\angle \mathrm{ACB}$ is inscribed in arc ACB of a circle with centre O . If $\angle \mathrm{ACB}=65^{\circ}$, find $m(\operatorname{arc} A C B)$.
(A) 65°
(B) 130°
(C) 295°
(D) 230°
4) In a cyclic $\square \mathrm{ABCD}$, twice the measure of $\angle \mathrm{A}$ is thrice the measure of $\angle \mathrm{C}$. Find the measure of $\angle \mathrm{C}$?
(A) 36
(B) 72
(C) 90
(D) 108
5) How many circles can drawn passing through three non -collinear points?
(A) 0
(B) Infinite
(C) 2
(D) One and only one(unique)
6) Two circles of radii 5.5 cm and 4.2 cm touch each other externally. Find the distance between their centres
(A) 9.7
(B) 1.3
(C) 2.6
(D) 4.6
7) What is the measurement of angle inscribed in a semicircle?
(A) 90°
(B) 120°
(C) 100°
(D) 60°
8) Two circles having diameters 8 cm and 6 cm touch each other internally. Find
the distance between their centres.
(A)
2 (B)
14
(C) 7
(D) 1
9) Points A, B, C are on a circle, such that $m(\operatorname{arc} A B)=m(\operatorname{arc} B C)=120^{\circ}$. No point, except point B , is common to the arcs. Which is the type of $\Delta \mathrm{ABC}$?
(A) Equilateral triangle
(B) Scalene triangle
(C) Right angled triangle
(D) Isosceles triangle
10) In $\square \mathrm{PQRS}$ if $\angle \mathrm{RSP}=80^{\circ}$ then find $\angle \mathrm{RQT}$?
(A) 100°
(B) 80°
(C) 70°
(D) 110°

Q. 2 Solve the following sub-questions. (1 mark question)

1) How many circles can be drawn passing through a point?

2
Segment DP and segment DQ are tangent segments to the circle with center A,

If $\mathrm{DP}=7 \mathrm{~cm}$. So find the length of the segment DQ ?

3) Two circles having radii 3.5 cm and 4.8 cm touch each other internally. Find the distance between their centres.
4) What is the measure of a semi circular arc?
5)
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ are any points on the circle with centre O. If $\mathrm{m} \operatorname{arc}(\mathrm{BC})=110^{\circ}$ and $\mathrm{m} \operatorname{arc}(\mathrm{AB})=$ 125°, find measure arc AC

6) In the figure if $\angle \mathrm{PQR}=50^{\circ}$ then find $\angle \mathrm{PSR}$

7)

In the adjoining figure the radius of a circle with centre C is 6 cm , line AB is a tangent at A . What is the measure of $\angle \mathrm{CAB}$? Why?
8) In the figure quadrilateral ABCD is a cyclic, if $\angle D A B=75^{\circ}$ then find measure of $\angle D C B$

9)

In the adjoining figure, seg DE is the chord of the circle with center C . seg $\mathrm{CF} \perp$ seg DE and $\mathrm{DE}=16 \mathrm{~cm}$, then find the length of DF ?

10)

> In the figure, if $\angle \mathrm{ABC}=35^{\circ}$ then find $\mathrm{m}(\operatorname{arc} \mathrm{AXC})$?

Q. 3 Complete the following activities (2 marks each).

The chords corresponding to congruent arcs of a circle are congruent.Prove the theorem by completing following activity.

Given : In a circle with centre B
$\operatorname{arc} \mathrm{APC} \cong \operatorname{arc} \mathrm{DQE}$
To Prove : Chord AC $\cong c h o r d ~ D E ~$
Proof: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBE}$, side $\mathrm{AB} \cong$ side DB

side $B C \cong$ side \square
\square
$\angle \mathrm{ABC} \cong \angle \mathrm{DBE} \quad$ (measure of congruent arcs)

$$
\Delta \mathrm{ABC} \cong \triangle \mathrm{DBE}
$$

2)

In figure, points G, D, E, F
are concyclic points of a circle with centre C .
$\angle \mathrm{ECF}=70^{\circ}, \mathrm{m}(\operatorname{arc} \mathrm{DGF})=200^{\circ}$

find m (arc DEF) by completing activity.

```
m}(\operatorname{arc}EF)=\angleEC
..... (Definition of measure of arc )
\thereforem(arc EF)}
\(\square\)
```

But; $\mathrm{m}(\operatorname{arc} \mathrm{DE})+\mathrm{m}(\operatorname{arc} \mathrm{EF})+\mathrm{m}(\operatorname{arc} \mathrm{DGF})=\square$ (measure of a complete circle)
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{DE})=$ \qquad
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{DEF})=\mathrm{m}(\operatorname{arc} \mathrm{DE})+\mathrm{m}(\operatorname{arc} \mathrm{EF})$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{DEF})=$ \square

3)

In the figure if the chord PQ and chord RS intersect at point T Prove that : $m \angle S T Q=\frac{1}{2}[m(\operatorname{arc} P R)+m(\operatorname{arc} S Q)]$ for any measure of $\angle S T Q$ by filling out the boxes.

Proof: $\mathbf{m} \angle \mathbf{S T Q}=\mathbf{m} \angle \mathbf{S P Q}+$ \square .. (Theorem of the external angle of a triangle) $=\frac{1}{2} \mathrm{~m}($ कंस $S Q)+\square \ldots \ldots$ (inscibed angle theorem)

$$
=\frac{1}{2}[\quad+\quad]
$$

4) In figure, chord EF $\|$ chord GH. Prove that, chord $\mathrm{EG} \cong$ chord FH . Fill in the blanks and write the proof. Proof : Draw seg GF.

The angle inscribed in the semicircle is a right angle Prove the result by completing the following activity.

Given: $\angle A B C$ is inscribed angle in a semicircle with center M.

To prove : $\angle A B C$ is a right angle.
Proof: segment AC is a diameter of the circle.

$$
\therefore \mathrm{m}(\operatorname{arc} \mathrm{AXC})=\square
$$

Arc AXC is intercepted by the inscribed angle $\angle \mathrm{ABC}$

$$
\begin{aligned}
\angle \mathrm{ABC} & =\square \quad \ldots . .(\text { Inscribed angle theorem }) \\
& =\frac{\mathbf{1}}{\mathbf{2}} \times \square
\end{aligned}
$$

$\therefore \mathrm{m} \angle \mathrm{ABC}=$ \square
$\therefore \angle \mathrm{ABC}$ is a right angle.
6) Prove that angles inscribed in the same arc are congruent.

Given: In a circle with centre C, $\angle P Q R$ and $\angle \mathrm{PSR}$ is inscribed in same arc PQR.Arc PTR is intercepted by the angles.
To prove : $\angle P Q R \cong \angle P S R$.

$$
\begin{array}{r}
\text { Proof : } \mathrm{m} \angle \mathrm{PQR}=\frac{1}{2} \times[\mathrm{m}(\operatorname{arc} \mathrm{PTR})] \quad \ldots \text { (i) } \square \\
\mathrm{m} \angle \square=\frac{1}{2} \times[\mathrm{m}(\operatorname{arc} \mathrm{PTR})] \ldots \ldots . \square \\
\mathrm{m} \angle \square=\mathrm{m} \angle \mathrm{PSR} \quad \ldots . . . \mathrm{By}(\mathrm{i}) \&(\mathrm{ii})
\end{array}
$$

$\therefore \angle \mathrm{PQR} \cong \angle \mathrm{PSR}$
7) If O is the center of the circle in the figure alongside , then complete the table from the given information.

The type of arc

Type of circular arc	Name of circular arc	Measure of circular arc
Minor arc		
Major arc		

Q.4. Solve the following sub-questions. (2 marks question)

1)

In the adjoining figure circle with Centre D touches the sides of $\angle A C B$ at A and B. If $\angle A C B=52^{\circ}$, find measure of $\angle \mathrm{ADB}$.

2)

In the adjoining figure, the line MN touches the circle with center A at point M . If $\mathrm{AN}=13$ and $\mathrm{MN}=5$ then find the radius of the circle?

3) What is the distance between two parallel tangents of a circle having radius 4.5 cm ? Justify your answer.
4)

In figure, $\mathrm{m}(\operatorname{arc} \mathrm{NS})=125^{\circ}, \mathrm{m}(\operatorname{arc} \mathrm{EF})=37^{\circ}$,
find the measure $\angle \mathrm{NMS}$.

5) Length of a tangent segment drawn from a point which is at a distance 15 cm from the centre of a circle is 12 cm , find the diameter of the circle?
6) In the figure a circle with center C has $\mathrm{m}(\operatorname{arc} \mathrm{AXB})=100^{\circ}$ then find central $\angle \mathrm{ACB}$ and measure m (arc AYB).

7)

In figure, M is the centre of the circle and seg KL is a tangent segment. If $\mathrm{MK}=12, \mathrm{KL}=6 \sqrt{3}$ then find (1) Radius of the circle.
(2) Measures of $\angle \mathrm{K}$ and $\angle \mathrm{M}$.
8)

In figure, chords AC and DE intersect at B . If $\angle \mathrm{ABE}=108^{\circ}, \mathrm{m}(\operatorname{arc} \mathrm{AE})=95^{\circ}$, find $\mathrm{m}(\operatorname{arc} \mathrm{DC})$.

Q. 5. Complete the following activity. (3 marks each)

1) Tangent segments drawn from an external point to a circle are congruent, prove this theorem.Complete the following activity.

Given :

Proof : Draw radius AP and radius AQ and complete the following proof of the theorem.

$$
\text { In } \triangle P A D \text { and } \triangle Q A D,
$$

$$
\begin{array}{ll}
\text { Seg } \mathrm{PA} \cong & \ldots .(\text { radii of the same circle. }) \\
\operatorname{Seg~} \mathrm{AD} \cong \operatorname{Seg} \mathrm{AD} & \ldots .(\square) \\
\angle \mathrm{APD} \cong \angle \mathrm{AQD}=90^{\circ} & \ldots .(\text { tangent theorem }) \\
\therefore \triangle \mathrm{PAD} \cong \triangle \mathrm{QAD} & \ldots . \\
\therefore \operatorname{seg} \mathrm{DP} \cong \operatorname{seg} \mathrm{DQ} & \ldots .(\square)
\end{array}
$$

2)

\square MRPN is cyclic, $\angle \mathrm{R}=(5 \mathrm{x}-13)^{\circ}, \angle \mathrm{N}=(4 \mathrm{x}+4)^{\circ}$. Find measures of \angle R and $\angle \mathrm{N}$, by completing the following activity.

Solution: \square MRPN is cyclic
The opposite angles of a cyclic square are \square

$$
\begin{array}{r}
\angle \mathrm{R}+\angle \mathrm{N}=\square \\
\therefore(5 \mathrm{x}-13)^{\circ}+\left(4 \mathrm{x}+4^{\circ}\right)=\square \\
\therefore 9 \mathrm{x}=189 \\
\therefore \mathrm{x}=\square \\
\therefore \angle \mathrm{R}=(5 \mathrm{x}-13)^{\circ}=\square \\
\therefore \angle \mathrm{N}=(4 \mathrm{x}+4)^{\circ}=\square
\end{array}
$$

3) In figure, seg $A B$ is a diameter of a circle with centre O . The bisector of $\angle A C B$ intersects the circle at point D. Prove that, seg $\mathrm{AD} \cong \operatorname{seg} \mathrm{BD}$. Complete the following proof by filling in the blanks.

Proof Draw seg OD.

4)

In the adjoining figure circles with centres X and Y touch each other at point Z . A secant passing through Z intersects the circles at points A and B respectively.
Prove that, radius XA $\|$ radius YB.
Fill in the blanks and complete the proof.

Construction : Draw segments XZ and YZ.
Proof :By theorem of touching circles, points $\mathrm{X}, \mathrm{Z}, \mathrm{Y}$ are \square
$\therefore \angle \mathrm{XZA} \cong \square$ \qquad opposite angles

Let $\angle \mathrm{XZA}=\angle \mathrm{BZY}=a$
Now, seg XA $\cong \operatorname{seg} \mathrm{XZ}$ \qquad (radii of the same circle.)
$\therefore \angle \mathrm{XAZ}=\square=a$
........ (isosceles triangle theorem) (II)
........ (radii of the same circle.)
similarly, seg $\mathrm{YB} \cong \operatorname{seg} \mathrm{YZ}$
........ (isosceles triangle theorem.) (III)
\therefore from (I), (II), (III),
$\angle \mathrm{XAZ}=$ \qquad
\therefore radius $\mathrm{XA} \|$ radius YB

5) An exterior angle of a cyclic quadrilateral is congruent to the angle opposite to its adjacent interior angle, to prove the theorem complete the activity .

Given: $\square \mathrm{ABCD}$ is cyclic ,

To prove : $\angle \mathrm{DCE} \cong \angle \mathrm{BAD}$

Proof : $\quad \square+\angle \mathrm{BCD}=\square$....(Angles in linear pair) (I)
$\square \mathrm{ABCD}$ is a cyclic .

By (I) and (II)

$$
\angle \mathrm{DCE}+\angle \mathrm{BCD} \square+\angle \mathrm{BAD}
$$

$$
\angle \mathrm{DCE} \cong \angle \mathrm{BAD}
$$

6)

Seg RM and seg RN are tangent segments of a circle with centre O. Prove that seg OR bisects $\angle \mathrm{MRN}$ as well as $\angle \mathrm{MON}$ with the held of activitv.

Proof: In $\triangle \mathrm{RMO}$ and $\triangle \mathrm{RNO}$,

7)

In figure, O is the centre of the circle.
Seg AB, seg AC are tangent segments. Radius of the circle is r and $\ell(\mathrm{AB})=\mathrm{r}$, Prove that, \square_{ABOC} is a square.

Proof: Draw segment OB and OC.

$$
\begin{array}{cll}
\boldsymbol{\ell}(\mathrm{AB})=\mathrm{r} & \ldots . .(\text { (Given }) & \text { (I) } \\
\mathrm{AB}=\mathrm{AC} & \ldots \ldots .(\square) \\
\text { But } \mathrm{OB}=\mathrm{OC}=\mathrm{r} & \ldots . .(\square)
\end{array}
$$

From (I),(II) and (III)
$\mathrm{AB}=\square=\mathrm{OB}=\mathrm{OC}=\mathrm{r}$
\therefore Quadrilateral ABOC is \qquad
Similarly $\angle \mathrm{OBA}=\square$....(Tangent Theorem)
If one angle of \square is right angle ,then it is a square.
\therefore Quadrilateral ABOC is a suqare.

Q.6. Solve the following sub-questions. (3 marks question)

1) Prove the following theorems:
i) Opposite angles of a cyclic quadrilateral are supplementry.
ii) Tangent segments drawn from an external point to a circle are congruent.
iii) Angles inscribed in the same arc are congruent.
2)

Line ℓ touches a circle with centre O at point P . If radius of the circle is 9 cm , answer the following.
(i) What is $\mathrm{d}(\mathrm{O}, \mathrm{P})=$? Why?
(ii) If $\mathrm{d}(\mathrm{O}, \mathrm{Q})=8 \mathrm{~cm}$, where does the point Q lie?
(iii) If $\mathrm{d}(\mathrm{PQ})=15 \mathrm{~cm}$, How many locations of point R
 are line on line ℓ ? At what distance will each of them be from point P ?
3) In the adjoining figure, O is the centre of the circle. From point R, seg RM and seg RN are tangent segments touching the circle at M and N . If $(\mathrm{OR})=10 \mathrm{~cm}$ and radius of the circle $=5$ cm , then

(1) What is the length of each tangent segment ?
(2) What is the measure of $\angle \mathrm{MRO}$?
(3) What is the measure of $\angle \mathrm{MRN}$?
4)

In figure , chord $\mathrm{AB} \cong$ chord CD , Prove that, $\operatorname{arc} \mathrm{AC} \cong \operatorname{arc} \mathrm{BD}$

5)

In figure, in a circle with centre O , length of chord AB is equal to the radius of the circle. Find measure of each of the following.
(1) $\angle \mathrm{AOB}$
(2) $\angle \mathrm{ACB}$
(3) $\operatorname{arc} \mathrm{AB}$

6)

In figure, chord $\mathrm{LM} \cong \operatorname{chord} \mathrm{LN}, \angle \mathrm{L}=35^{\circ}$ find (i) $m(\operatorname{arc} \mathrm{MN})$
(ii) $m(\operatorname{arc} \mathrm{LN})$

7) Prove that, any rectangle is a cyclic quadrilateral.
8) In figure, PQRS is cyclic. side $\mathrm{PQ} \cong$ side $\mathrm{RQ} . \angle \mathrm{PSR}=110^{\circ}$,
Find- (1) measure of $\angle \mathrm{PQR}$
(2) $\mathrm{m}(\operatorname{arc} \mathrm{PQR})$
(3) $\mathrm{m}(\operatorname{arc} \mathrm{QR})$

9)
10)

In figure, line ℓ touches the circle with centre O at point P . Q is the mid point of radius OP . RS is a chord through Q such that chords RS $\|$ line ℓ. If RS = 12 find the radius of the circle
In figure, O is the centre of a circle, chord $\mathrm{PQ} \cong$ chord RS If $\angle \mathrm{POR}=70^{\circ}$ and (arc RS) $=80^{\circ}$, find (1) $\mathrm{m}(\operatorname{arc} \mathrm{PR})$ $\mathrm{m}(\operatorname{arc} \mathrm{QS})$ (3) $\mathrm{m}(\operatorname{arc} \mathrm{QSR})$

11)

In the adjoining figure circle with Centre Q touches the sides of $\angle \mathrm{MPN}$ at M and N . If $\angle \mathrm{MPN}=40^{\circ}$, find measure of $\angle \mathrm{MQN}$.

12)

In the figure if O is the center of the circle and two chords of the circle EF and GH are parallel to each other. Show that $\angle E O G \cong \angle F O H$

Q. 7. Solve the following sub-questions. (4 marks question)

1)

In the figure segment PQ is the diameter of the circle with center O. The tangent to the tangent circle drawn from point C on it, intersects the tangents drawn from points P and Q at points A and B respectively, prove that $\angle A O C=90^{\circ}$

2) The chords $A B$ and $C D$ of the circle intersect at point M in the interior of the same circle then prove that $\mathrm{CM} \times \mathrm{BD}=\mathrm{BM} \times \mathrm{AC}$.
3)

A circle with centre P is inscribed in the
$\triangle A B C$. Side $A B$, side $B C$ and side $A C$ touches the circle at points L, M and N respectively. Radius of the circle is r.

Prove that: $\mathrm{A}(\triangle \mathrm{ABC})=\frac{1}{2}(A B+B C+A C) \times \mathrm{r}$

4)

In the figure $\square \mathrm{ABCD}$ is a cyclic quadrilateral. If $\mathrm{m}(\operatorname{arc} \mathrm{ABC})=230^{\circ}$.then find $\angle \mathrm{ABC}, \angle \mathrm{CDA}, \angle \mathrm{CBE}$

5)

The figure $\triangle \mathrm{ABC}$ is an isosceles triangle with a perimeter of 44 cm . The sides AB and BC are congruent and the length of the base AC is 12 cm . If a circle touches all three sides as shown in the figure, then find the length of the tangent segment drawn to the circle from the point B

6)

In the figure $\triangle A B C$ is an equilateral triangle. The angle bisector of $\angle B$ will intersect the circumcircle $\triangle A B C$ at point P.

Then prove that : $\mathrm{CQ}=\mathrm{CA}$.
7)

In the figure quadrilateral ABCD is cyclic , If $\mathrm{m}(\operatorname{arc} \mathrm{BC})=90^{\circ}$ and $\angle \mathrm{DBC}=55^{\circ}$. Then find the measure of $\angle B C D$.

8)

Given : A circle inscribed in a right angled $\triangle A B C$. If $\angle A C B=90^{\circ}$ and the radius of the circle is r.

To prove : $2 \mathrm{r}=\mathrm{a}+\mathrm{b}-\mathrm{c}$

9) In a circle with centre P, chord $A B$ is parallel to a tangent and intersects the radius drawn from the point of contact to its midpoint. If $A B=16 \sqrt{3}$ then find the radius of the circle.
10) In the figure, O is the center of the circle.

Line $A Q$ is a tangent. If $\mathrm{OP}=3$
$\mathrm{m}(\operatorname{arc} \mathrm{PM})=120^{\circ}$
then find the length of AP?

Q. 8. Solve the following sub-questions (3 marks each)

1)

In the figure, O is the centre of the circle and $\angle \mathrm{AOB}=90^{\circ}, \angle \mathrm{ABC}=30^{\circ}$

Then find $\angle \mathrm{CAB}$?

2)

In the figure a circle with center P touches the semicircle at points Q and C having center O . if diameter $\mathrm{AB}=10, \mathrm{AC}=6$ then find the radius x of the smaller circle?
3) In the figure a circle touches all the sides of quadrilateral ABCD from the inside. The center of the circle is O . If $\mathrm{AD} \perp \mathrm{DC}$ and $\mathrm{BC}=38, \mathrm{QB}=27, \mathrm{DC}=25$ then find the radius of the circle?

4)

If AB and CD are the common tangents in the circles of two unequal (different) radii then show that $\operatorname{seg} A B \cong \operatorname{seg} C D$

5) Circles with centres A, B and C touch each other externally. If $A B=36$, $\mathrm{BC}=32, \mathrm{CA}=30$, then find the radii of each circle.

4. Geometric Constructions

Question 1) (A) choose the correct alternative answer for each of the following sub question. Write the correct alphabet.

1) \qquad number of tangents can be drawn to a circle from the point on the circle.
A) 3
B) 2
C) 1
D) 0
2) The tangents drawn at the end of a diameter of a circle are
A) Perpendicular
B) parallel
C) congruent
D) can't say
3) $\Delta \mathrm{LMN} \sim \Delta \mathrm{HIJ}$ and $\frac{L M}{H I}=\frac{2}{3}$ then
A) $\Delta \mathrm{LMN}$ is a smaller triangle.
B) $\Delta \mathrm{HIJ}$ is a smaller triangle.
C) Both triangles are congruent.
D) Can't say.
4) \qquad number of tangents can be drawn to a circle from the point outside the circle.
A) 2
B) 1
C) one and only one
D) 0
5)

In the figure $\Delta \mathrm{ABC} \sim \Delta \mathrm{ADE}$ then the ratio of their corresponding sides is
\qquad
A) $\frac{3}{1}$
B) $\frac{1}{3}$
C) $\frac{3}{4}$
D) $\frac{4}{3}$
6) Which theorem is used while constructing a tangent to the circle by using center of a circle?
A) tangent - radius theorem.
B) Converse of tangent - radius theorem.
C) Pythagoras theorem
D) Converse of Pythagoras theorem.
7) $\triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}, \frac{P R}{A C}=\frac{5}{7}$ then
A) $\triangle \mathrm{ABC}$ is greater.
B) $\triangle \mathrm{PQR}$ is greater.
C) Both triangles are congruent.
D) Can't say.
8) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AQR}$. $\frac{A B}{A Q}=\frac{7}{5}$ then which of the following option is true.
A) $A-Q-B$
B) $A-B-Q$
C) $\mathrm{A}-\mathrm{C}-\mathrm{B}$
D) $A-R-B$

Question 1 (B) solve the following examples (1 mark each)

1) Construct $\angle A B C=60^{\circ}$ and bisect it.
2) Construct $\angle \mathrm{PQR}=115^{\circ}$ and divide it into two equal parts.
3) Draw Seg $A B$ of lenght 9.7 cm . Take point P on it such that $A P=$ 3.5 cm and A-P-B. Construct perpendicular to seg $A B$ from point P.
4) Draw seg $A B$ of length 4.5 cm and draw its perpendicular bisector.
5) Draw seg $A B$ of length 9 cm and divide it in the ratio $3: 2$.
6) Draw a circle of radius 3 cm and draw a tangent to the circle from point P on the circle.

Question 2) (A) Solve the following examples as per the instructions given in the activity. (2 marks each)
1)

Draw a circle and take any point P on the circle. Draw ray $O P$

Draw perpendicular to ray OP from point P.
2)

Draw a circle with center O and radius 3 cm

Take any point P on the circle.

Draw ray OP.

Draw perpendicular to ray OP from point P

1) To draw tangents to the circle from the end points of the diameter of the circle.

Construct a circle with center O. Draw any diameter $A B$ of it.

\square

Construct perpendicular to ray OA from point A

!

Construct perpendicular to Ray OB from point B

Question 2) (B) Solve the following examples (2 marks each)

1) Draw a circle of radius 3.4 cm take any point P on it. Draw tangent to the circle from point P.
2) Draw a circle of radius 4.2 cm take any point M on it. Draw tangent to the circle from point M.
3) Draw a circle of radius 3 cm . Take any point K on it. Draw a tangent to the circle from point K without using center of the circle.
4) Draw a circle of radius 3.4 cm . Draw a chord MN 5.7 cm long in a circle. Draw a tangent to the circle from point M and point N .
5) Draw a circle of 4.2 cm . Draw a tangent to the point P on the circle without using the center of the circle.
6) Draw a circle with a diameter $A B$ of length 6 cm . Draw a tangent to the circle from the endpoints of the diameter.
7) Draw seg $A B=6.8 \mathrm{~cm}$. Draw a circle with diameter $A B$. Draw points C on the circle apart from A and B. Draw line $A C$ and line $C B$ Write the measure of angle $A C B$.

Question 3) (A) Do the activity as per the given instructions. (3 marks each)

1) Complete the following activity to draw tangents to the circle.
a) Draw a circle with radius 3.3 cm and center O . Draw chord $P Q$ of length 6.6 cm .. Draw ray OP and ray OQ.
b) Draw a line perpendicular to the ray $O P$ from P.
c) Draw a line perpendicular to the ray $O Q$ from Q.
2) Draw a circle with center O. Draw an arc $A B$ of 100° measure.

Perform the following steps to draw tangents to the circle from point A and B.
a) Draw a circle with any radius and center P.
b) Take any point A on the circle.
c) Draw ray PB such $\angle \mathrm{APB}=100^{\circ}$.
d) Draw perpendicular to ray PA from point A .
e) Draw perpendicular to ray PB from point B .
3) Do the following activity to draw tangents to the circle without using center of the circle.
a) Draw a circle with radius 3.5 cm and take any point C on it.
b) Draw chord $C B$ and an inscribed angle $C A B$
c) With the center A and any convenient radius draw an arc intersecting the sides of angle BAC in points M and N .
d) Using the same radius draw and center C , draw an arc intersecting the chord $C B$ at point R.
e) Taking the radius equal to $d(M N)$ and center R, draw an arc intersecting the arc drawn in the previous step. Let D be the point of intersection of these arcs. Draw line CD. Line CD is the required tangent to the circle.

Question 3 B) Solve the following examples (3 marks each):

1) $\triangle \mathrm{ABC} \sim \triangle \mathrm{PBQ}$, In $\triangle \mathrm{ABC}, \mathrm{AB}=3 \mathrm{~cm}, \angle \mathrm{~B}=90^{\circ}, \mathrm{BC}=4 \mathrm{~cm}$.

Ratio of the corresponding sides of two triangles is $7: 4$. Then construct $\triangle A B C$ and $\triangle P B Q$
2) $\triangle \mathrm{RHP} \sim \Delta \mathrm{NED}, \operatorname{In} \triangle \mathrm{NED}, \mathrm{NE}=7 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ}, \angle \mathrm{N}=20^{\circ}$ and $\frac{H P}{E D}=\frac{4}{5}$. Then construct $\triangle \mathrm{RHP}$ and $\Delta \mathrm{NED}$.
3) $\triangle \mathrm{PQR} \sim \triangle \mathrm{ABC}$, In $\triangle \mathrm{PQR} \mathrm{PQ}=3.6 \mathrm{~cm}, \mathrm{QR}=4 \mathrm{~cm}, \mathrm{PR}=4.2 \mathrm{~cm}$ ratio of the corresponding sides of triangle is 3:4 then construct $\triangle P Q R$ and $\triangle A B C$.
4) Construct an equilateral $\triangle A B C$ with side $5 \mathrm{~cm} . \triangle A B C \sim \triangle L M N$, ratio the corresponding sides of triangle is 6:7 then construct $\Delta \mathrm{LMN}$ and $\triangle \mathrm{ABC}$
5) Draw a circle with center O and radius 3.4. Draw a chord MN of length 5.7 cm in a circle. Draw a tangent to the circle from point M and N .
6) Draw a circle with center O and radius 3.6 cm . draw a tangent to the circle from point B at a distance of 7.2 cm from the center of the circle.
7) Draw a circle with center C and radius 3.2 cm . Draw a tangent to the circle from point P at a distance of 7.5 cm from the center of the circle.
8) Draw a circle with a radius of 3.5 cm . Take the point K anywhere on the circle. Draw a tangent to the circle from K (without using the center of the circle).
9) Draw a circle of radius 4.2 cm . Draw arc PQ measuring 120° Draw a tangent to the circle from point P and point Q.
10) Draw a circle of radius 4.2 cm . Draw a tangent to the circle from a point 7 cm away from the center of the circle.
11) Draw a circle of radius 3 cm and draw chord $X Y 5 \mathrm{~cm}$ long. Draw the tangent of the circle passing through point X and point Y (without using the center of the circle).

Question 4) solve the following examples. (4 marks each)

1) $\triangle \mathrm{AMT} \sim \Delta \mathrm{AHE}, \operatorname{In} \triangle \mathrm{AMT}, \mathrm{AM}=6.3 \mathrm{~cm}$
$\angle \mathrm{MAT}=120^{\circ}, \mathrm{AT}=4.9 \mathrm{~cm}, \frac{\mathrm{AM}}{\mathrm{HA}}=\frac{7}{5}$ then construct $\triangle \mathrm{AMT}$ and $\triangle \mathrm{AHE}$.
2) $\triangle \mathrm{RHP} \sim \triangle \mathrm{NED}$, In $\triangle \mathrm{NED}, \mathrm{NE}=7 \mathrm{~cm} . \angle \mathrm{D}=30^{\circ}, \angle \mathrm{N}=20^{\circ}, \frac{H P}{E D}=\frac{4}{5}$ then construct \triangle RHP and \triangle NED.
3) $\triangle \mathrm{ABC} . \sim \Delta \mathrm{PBR}, \mathrm{BC}=8 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}, \angle \mathrm{~B}=90^{\circ}$,

$$
\frac{B C}{B R}=\frac{5}{4} \text { then construct } \triangle \mathrm{ABC} \text { and } \triangle \mathrm{PBR}
$$

4) $\triangle \mathrm{AMT} . \sim \Delta \mathrm{AHE}$, In $\triangle \mathrm{AMT} \mathrm{AM}=6.3 \mathrm{~cm}, \angle \mathrm{TAM}=50^{\circ}, \mathrm{AT}=5.6 \mathrm{~cm}, \frac{A M}{A H}=\frac{7}{5}$, then construct $\triangle \mathrm{AMT}$ and $\triangle \mathrm{AHE}$.
5) Draw a circle with radius 3.3 cm . Draw a chord $P Q$ of length 6.6 cm . Draw tangents to the circle at points P and Q . Write your observation about the tangents.
6) Draw a circle with center O and radius 3 cm . Take the point P and the point Q at a distance of 7 cm from the center of the circle on the opposite side of the circle at the intersection passing through the center of the circle Draw a tangent to the circle from the point P and the point Q.

Question 5) Solve the following examples (3 marks each)

1) Draw a circle with radius 4 cm and construct two tangents to a circle such that when those two tangents intersect each other outside the circle they make an angle of 60° with each other.
2) $A B=6 \mathrm{~cm}, \angle B A Q=50^{\circ}$. Draw a circle passing through A and B so that $A Q$ is the tangent to the circle.
3) Draw a circle with radius 3 cm . Construct a square such that each of its side will touch the circle from outside.
4) Take points P and Q on the same side of line $A B$ Draw a circle passing through point P and point Q so that it touches line $A B$.
5) Draw any circle with radius greater than 1.8 cm and less than 3 cm .

Draw a chord $A B 3.6 \mathrm{~cm}$ long in this circle. Tangent to the circle passing through A and B without using the center of the circle
6) Draw a circle with center O and radius 3 cm . Take point P outside the circle such that $d(O, P)=4.5 \mathrm{~cm}$. Draw tangents to the circle from point P.
7) Draw a circle with center O and radius 2.8 cm . Take point P in the exterior of a circle such that tangents PA and PB drawn from point P make an angle $\angle A P B$ of measure 70°.
8) Point P is at a distance of 6 cm from line $A B$. Draw a circle of radius 4 cm passing through point P so that line $A B$ is the tangent to the circle.

Coordinate Geometry

Q. 1 A) MCQ

1) Point P is midpoint of segment $A B$ where $A(-4,2)$ and $B(6,2)$ then the coordinates of P are \qquad
A) $(-1,2)$
B) $(1,2)$
C) $(1,-2)$
D) $(-1,-2)$
2) The distance between Point $P(2,2)$ and $Q(5, x)$ is 5 cm then the value of $x=$ \qquad
A) 2
B) 6
C) 3
D) 1
3) The distance between points $P(-1,1)$ and $Q(5,-7)$ is \qquad
A) 11 cm
B) 10 cm
C) 5 cm
D) 7 cm
4) If the length of the segment joining point $L(x, 7)$ and point $M(1,15)$ is 10 cm then the value of x is \qquad
A) 7
B) 7 or -5
C) -1
D) 1
5) Find distance between point $\mathrm{A}(-3,4)$ and origin 0 .
A) 7 cm
B) 10 cm
C) 5 cm
D) -5 cm
6) If point $P(1,1)$ divide segment joining point A and point $B(-1,-1)$ in the ratio 5:2 then the coordinates of A are
A) $(3,3)$
B) $(6,6)$
C) $(2,2)$
D) $(1,1)$
7) If segment $A B$ is parallel Y-axis and coordinates of A are $(1,3)$ then the coordinates of B are \qquad
A) $(3,1)$
B) $(5,3)$
C) $(3,0)$
D) $(1,-3)$
8) If point P is midpoint of segment joining point $A(-4,2)$ and point $B(6,2)$ then the coordinates of P are
A) ($-1,2$)
B) $(1,2)$
C) $(1,-2)$
D) $(-1,-2)$
9) If point P divides segment $A B$ in the ratio $1: 3$ where $A(-5,3)$ and $B(3,-5)$ then the coordinates of P are \qquad
A) $(-2,-2)$
B) $(-1,-1)$
C) $(-3,1)$
D) $(1,-3)$
10) If the sum of x-coordinates of the vertices of a triangle is 12 and the sum of Y-coordinates is 9 then the coordinates of centroid are \qquad
A) $(12,9)$
B) $(9,12)$
C) $(4,3)$
D) $(3,4)$

Q. 1 B. Solve the following (1 mark each)

1) Find the coordinates of the point of intersection of the graph of the equation $\mathrm{X}=2$ and $\mathrm{y}=-3$.
2) Find distance between point $A(7,5)$ and $B(2,5)$.
3) The coordinates of diameter AB of a circle are $\mathrm{A}(2,7)$ and $B(4,5)$ then find the coordinates of the centre.
4) Write the X -coordinate and Y -coordinate of point $\mathrm{P}(-5,4)$.
5) What are the coordinates of origin?
6) Find distance of point $A(6,8)$ from origin:
7) Find coordinates of midpoint joining ($-2,6$) and (8,2)
8) Find the coordinates of centroid of a triangle whose vertices are $(4,7),(8,4)$ and $(7,11)$.
9) Find distance between point $O(0,0)$ and $B(-5,12)$.
10) Find coordinates of midpoint of point $(0,2)$ and $(12,14)$.
Q. 2 A) Complete the activity (each of 2 mark)
11) Find distance between point $Q(3,-7)$ and point $R(3,3)$

Solution: Suppose $\mathrm{Q}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and point $\mathrm{R}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$

$$
\mathrm{X}_{1}=3, \mathrm{y}_{1}=-7 \quad \text { and } \mathrm{x}_{2}=3, \mathrm{y}_{2}=3
$$

Using distance formula,

$$
\mathrm{d}(\mathrm{Q}, \mathrm{R})=\sqrt{\square}
$$

$$
\begin{array}{r}
\therefore \mathrm{d}(\mathrm{Q}, \mathrm{R})=\sqrt{\square 100} \\
\quad \therefore \mathrm{~d}(\mathrm{Q}, \mathrm{R})=\sqrt{\square} \\
\quad \therefore \mathrm{d}(\mathrm{Q}, \mathrm{R})=\square
\end{array}
$$

2) Find distance between point $A(-1,1)$ and point $B(5,-7)$:

Solution:- Suppose $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$

$$
\mathrm{X}_{1}=-1, \mathrm{y}_{1}=1 \quad \text { and } \mathrm{x}_{2}=5, \mathrm{y}_{2}=-7
$$

Using distance formula,

$$
\begin{aligned}
& \mathrm{d}(\mathrm{~A}, \mathrm{~B})=\sqrt{(x 2-x 1)^{2}+(y 2-y 1)^{2}} \\
& \therefore \mathrm{~d}(\mathrm{~A}, \mathrm{~B})=\sqrt{\square+((-7)-\square})^{2} \\
& \therefore \mathrm{~d}(\mathrm{~A}, \mathrm{~B})=\sqrt{\square} \\
& \therefore \mathrm{d}(\mathrm{~A}, \mathrm{~B})=\square
\end{aligned}
$$

3) Find coordinates of the midpoint of a segment joining point $A(-1$,
$1)$ and point $\mathrm{B}(5,-7)$.
Solution: - Suppose $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$

$$
\mathrm{X}_{1}=-1, \mathrm{y}_{1}=1 \text { and } \mathrm{x}_{2}=5, \mathrm{y}_{2}=-7
$$

Using midpoint formula,
\therefore Coordinates of midpoint of segment $\mathrm{AB}=$

$$
\left(\frac{x 1+x 2}{2}, \frac{y 1+y 2}{2}\right)=\left(\frac{\square}{2},\right.
$$

\therefore Coordinates of the midpoint $=\left(\frac{4}{2}\right.$

\therefore Coordinates of the midpoint $=(2$, \square
4) The coordinates of the vertices of a triangle ABC are $\mathrm{A}(-7,6), \mathrm{B}(2$ $,-2)$ and $C(8,5)$ find coordinates of its centroid. Solution : - Suppose $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ and $C(x 3, y 3)$

$$
\mathrm{X}_{1}=-7, \mathrm{y}_{1}=6 \text { and } \mathrm{x}_{2}=2, \mathrm{y}_{2}=-2 \text { and } \mathrm{x}_{3}=8, \mathrm{y}_{3}=5
$$

Using Centroid formula

\therefore Coordinates of the centroid of a triangle
$\mathrm{ABC}=\left(\frac{x 1+x 2+x 3}{3}, \frac{y 1+y 2+y 3}{3}\right)=\left(\frac{\square}{3}\right.$

$\therefore \quad$ Coordinates of the centroid of a triangle $\mathrm{ABC}=\left(\frac{3}{3}, \square\right)$
\therefore Coordinates of the centroid of a triangle $\mathrm{ABC}=(1$, \square

Q. 2 Solve (Each of 2 marks)

1) The point Q divides segment joining $A(3,5)$ and $B(7,9)$ in the ratio $2: 3$. Find the X-coordinate of Q.
2) If the distance between point $L(x, 7)$ and point $M(1,15)$ is 10 then find the value of X .

3) Find the coordinates of midpoint of segment joining $(22,20)$ and (0 ,16)
4) Find distance CD where $C(-3 a, a), D(a,-2 a)$.
5) Show that the point $(11,-2)$ is equidistant from $(4,-3)$ and $(6,3)$.

Q. 3 A) Complete the activity (Each of 3 marks)

1) If the point $P(6,7)$ divides the segment joining $A(8,9)$ and $B(1,2)$ in some ratio. Find that ratio.

Solution : Point P divides segment $A B$ in the ratio m : n.

$$
\begin{aligned}
& A(8,9)=\left(x_{1}, y_{1}\right), B(1,2)=\left(x_{2}, y_{2}\right) \text { and } P(6,7)=(x, \\
& y) \\
& \text { Using Section formula of internal division, }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 7=\frac{m(\square)+n(9)}{m+n} \\
& \therefore 7 \mathrm{~m}+7 \mathrm{n}=\square+9 \mathrm{n} \\
& \therefore 7 \mathrm{~m}-\square=9 \mathrm{n}-\square \\
& \therefore \square=2 \mathrm{n} \\
& \therefore \frac{m}{n}=\square
\end{aligned}
$$

1) From the figure given alongside find the length of the median $A D$ of triangle $A B C$.

Complete the activity.
Solution :- Here A $(-1,1), B(5,-3), C(3,5)$ and

suppose $D(x, y)$ are coordinates of point D.
Using midpoint formula,

$$
\begin{aligned}
\mathrm{X}=\frac{5+3}{2} & \mathrm{y}=\frac{-3+5}{2} \\
& \therefore x=\square
\end{aligned}
$$

Using distance formula,

$$
\begin{gathered}
\therefore A D=\sqrt{(4-\square)^{2}+(1-1)^{2}} \\
\therefore A D=\sqrt{(\square)^{2}+(0)^{2}} \\
\therefore A D=\sqrt{\square}
\end{gathered}
$$

\therefore The length of median $A D=\square$

Q. 3 B) Solve the following (Each of 3 marks)

1) Show that $P(-2,2), Q(2,2)$ and $R(2,7)$ are vertices of a right angled triangle.
2) Show that the point $(0,9)$ is equidistant from the points $(-4,1)$ and $(4,1)$.
3) Point $P(-4,6)$ divides point $A(-6,10)$ and $B(m, n)$ in the ratio 2:1 then find the coordinates of point B.

Q. 4 Solve (Each of 4 marks)

1) Show that points $A(-4,-7), B(-1,2), C(8,5)$ and $D(5,-4)$ are the vertices of a parallelogram ABCD.
2) Show that the points $(0,-1),(8,3),(6,7)$ and $(-2,3)$ are vertices of a rectangle.
3) Show that the points $(2,0),(-2,0)$ and $(0,2)$ are vertices of a triangle. State the type of triangle with reason.
4) If $A(5,4), B(-3,-2)$ and $C(1-8)$ are the vertices of a $\triangle A B C$. Segment AD is median. Find the length of seg AD:
5) Show that $\mathrm{A}(1,2),(1,6), C(1+2 \sqrt{3}, 4)$ are vertices of an equilateral triangle.

Q.5) Solve (Each of 3 marks)

Seg OA is the radius of a circle with centre 0 .
The coordinates of point A is $(0,2)$ then
decide whether the point $\mathrm{B}(1,2)$ is on the circle?
2) Find the ratio in which Y-axis divides the point $A(3,5)$ and point $B(-$ $6,7)$. Find the coordinates of that point.
3) The points $(7,-6),(2, K)$ and $(h, 18)$ are the vertices of triangle. If $(1,5)$ are the coordinates of centroid. Find the value of h and $k .$.
4) Using distance formula decide whether the points $(4,3),(5,1)$ and $(1,9)$ are collinear or not?

Trigonometry

Que.) 1 A). Choose the correct alternative from those given below each question : (1 mark for each MCQ)

1. $\cos \theta \cdot \sec \theta=$?
A) 1
B) 0
C) $\frac{1}{2}$
D) $\sqrt{2}$
2. $\sec 60^{\circ}=$?
A) $\frac{1}{2}$
B) 2
C) $\frac{2}{\sqrt{3}}$
D) $\sqrt{2}$
3. $1+\cot ^{2} \theta=$?
A) $\tan ^{2} \theta$
B) $\sec ^{2} \theta$
C) $\operatorname{cosec}^{2} \theta$
D) $\cos ^{2} \theta$
4. $\cot \theta \cdot \tan \theta=$?
A) 1
B) 0
C) 2
D) $\sqrt{2}$
5. $\sec ^{2} \theta-\tan ^{2} \theta=$?
A) 0
B) 1
C) 2
D) $\sqrt{2}$
6. $\sin ^{2} \theta+\sin ^{2}(90-\theta)=?$
A) 0
B) 1
C) 2
D) $\sqrt{2}$
7. $\frac{1+\cot ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=$?
A) $\tan ^{2} \theta$
B) $\sec ^{2} \theta$
C) $\operatorname{cosec}^{2} \theta$
D) $\cot ^{2} \theta$
8. $\sin \theta=\frac{1}{2}$ then $\theta=$?
A) 30^{0}
B) 45^{0}
C) 60°
D) 90°
9. $\tan (90-\theta)=$?
A) $\sin \theta$
B) $\cos \theta$
C) $\cot \theta$
D) $\tan \theta$
10. $\cos 45^{\circ}=$?
A) $\sin 45^{\circ}$
B) $\sec 45^{0}$
C) $\cot 45^{0}$
D) $\tan 45^{\circ}$
11. If $\sin \theta=\frac{3}{5}$ then $\cos \theta=$?
A) $\frac{5}{3}$
B) $\frac{3}{5}$
C) $\frac{4}{5}$
D) $\frac{5}{4}$
12. Which is not correct formula?
A) $1+\tan ^{2} \theta=\sec ^{2} \theta$
B) $1+\sec ^{2} \theta=\tan ^{2} \theta$
C) $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$
D) $\sin ^{2} \theta+\cos ^{2} \theta=1$
13. If $\angle \mathrm{A}=30^{\circ}$ then $\tan 2 \mathrm{~A}=$?
A) 1
B) 0
C) $\frac{1}{\sqrt{3}}$
D) $\sqrt{3}$

Que.) 1 B). Solve the following questions : (1 mark each)

1. $\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$?
2. If $\tan \theta=\frac{13}{12}$ then $\cot \theta=$?
3. Prove that $\operatorname{cosec} \theta \times \sqrt{1-\cos ^{2} \theta}=1$.
4. If $\tan \theta=1$ then $\sin \theta \cdot \cos \theta=$?
5. If $2 \sin \theta=3 \cos \theta$ then $\tan \theta=$?
6. If $\cot (90-\mathrm{A})=1$ then $\angle \mathrm{A}=$?
7. If $1-\cos ^{2} \theta=\frac{1}{4}$ then $\theta=$?
8. Prove that $\frac{\cos (90-\mathrm{A})}{\sin \mathrm{A}}=\frac{\sin (90-\mathrm{A})}{\cos \mathrm{A}}$.
9. If $\tan \theta \mathrm{X} \square=\sin \theta$ then $\square=$?
10. $(\sec \theta+\tan \theta) \cdot(\sec \theta-\tan \theta)=$?
11. $\frac{\sin 75^{\circ}}{\cos 15^{\circ}}=$?

Que.) 2 A). Complete the following activities (2 marks each)

* (Write complete answers, don't just fill the boxes)

1. Prove that $\cos ^{2} \theta \cdot\left(1+\tan ^{2} \theta\right)=1$. Complete the activity given below.

Activity \Rightarrow L.H.S. $=$ \square

$$
=\cos ^{2} \theta \mathrm{X} \quad \square \ldots\left(1+\tan ^{2} \theta=\square\right.
$$)

$$
\begin{aligned}
& =(\cos \theta \mathrm{X} \square)^{2} \\
& =1^{2} \\
& =1 \\
& =\text { R.H.S. }
\end{aligned}
$$

2. $\frac{5}{\sin ^{2} \theta}-5 \cot ^{2} \theta$, Complete the activity given below.

Activity $\quad \Rightarrow \quad \frac{5}{\sin ^{2} \theta}-5 \cot ^{2} \theta$

$$
\begin{aligned}
& =\square\left(\frac{1}{\sin ^{2} \theta}-\cot ^{2} \theta\right) \\
& =5\left(\square-\cot ^{2} \theta\right) \quad \ldots \ldots \cdot\left(\frac{1}{\sin ^{2} \theta}=\square\right. \\
& =5(1) \\
& =
\end{aligned}
$$

3. If $\sec \theta+\tan \theta=\sqrt{3}$. Complete the activity to find the value of $\sec \theta-\tan \theta$

Activity $\Rightarrow \quad \square=1+\tan ^{2} \theta \ldots \ldots$. (Fundamental trigonometric identity)

$$
\square-\tan ^{2} \theta=1
$$

$$
\begin{aligned}
& (\sec \theta+\tan \theta) \cdot(\sec \theta-\tan \theta)=\square \\
& \sqrt{3} \quad \cdot(\sec \theta-\tan \theta)=1 \\
& \quad(\sec \theta-\tan \theta)=\square
\end{aligned}
$$

4. If $\tan \theta=\frac{9}{40}$. Complete the activity to find the value of $\sec \theta$.

Activity $\Rightarrow \sec ^{2} \theta=1+\square$

$$
\begin{aligned}
& \sec ^{2} \theta=1+\square^{2} \\
& \sec ^{2} \theta=1+\square \\
& \sec \theta=\square
\end{aligned}
$$

Que.) 2 B). Solve the following questions : (2 marks each)

1. If $\cos \theta=\frac{24}{25}$ then $\sin \theta=$?
2. Prove that $\frac{\sin ^{2} \theta}{\cos \theta}+\cos \theta=\sec \theta$.
3. Prove that $\frac{1}{\operatorname{cosec} \theta-\cot \theta}=\operatorname{cosec} \theta+\cot \theta$.
4. If $\cos \left(45^{\circ}+x\right)=\sin 30^{\circ}$ then $x=$?
5. If $\tan \theta+\cot \theta=2$ then $\tan ^{2} \theta+\cot ^{2} \theta=$?
6. Prove that $\sec ^{2} \theta+\operatorname{cosec}^{2} \theta=\sec ^{2} \theta X \operatorname{cosec}^{2} \theta$.
7. Prove that $\cot ^{2} \theta X \sec ^{2} \theta=\cot ^{2} \theta+1$.
8. If $3 \sin \theta=4 \cos \theta$ then $\sec \theta=$?
9. If $\sin 3 \mathrm{~A}=\cos 6 \mathrm{~A}$ then $\angle \mathrm{A}=$?
10. Prove that $\sec ^{2} \theta-\cos ^{2} \theta=\tan ^{2} \theta+\sin ^{2} \theta$.
11. Prove that $\frac{\tan \mathrm{A}}{\cot \mathrm{A}}=\frac{\sec ^{2} \mathrm{~A}}{\operatorname{cosec}^{2} \mathrm{~A}}$.
12. Prove that $\frac{\sin \theta+\tan \theta}{\cos \theta}=\tan \theta(1+\sec \theta)$.
13. Prove that $\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta=\operatorname{cosec} \theta$.
14. Prove that $\frac{\cos \theta}{1+\sin \theta}=\frac{1-\sin \theta}{\cos \theta}$.

Que.) 3 A). Complete the following activities (3 marks each)

* (Write complete answers, don't just fill the boxes)

1. $\sin ^{4} \mathrm{~A}-\cos ^{4} \mathrm{~A}=1-2 \cos ^{2} \mathrm{~A}$, For proof of this complete the activity given below.

$$
\begin{aligned}
& \text { Activity } \Rightarrow \text { L.H.S. }=\square \\
& =\left(\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}\right) \quad(\square) \\
& =1\left(\square \quad \ldots\left(\sin ^{2} \mathrm{~A}+\square\right.\right.
\end{aligned}
$$

```
= - - <os}\mp@subsup{}{}{2}\textrm{A
```

\qquad

```
                                    ( }\mp@subsup{\operatorname{sin}}{}{2}\textrm{A}=1-\mp@subsup{\operatorname{cos}}{}{2}\textrm{A}
= }
= R. H.S.
```

2. $\tan ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \theta X \sin ^{2} \theta$.For proof of this complete the activity given below.

Activity \Rightarrow L.H.S. $=$ \square

$$
\begin{aligned}
& =\square\left(1-\frac{\sin ^{2} \theta}{\tan ^{2} \theta}\right) \\
& =\tan ^{2} \theta\left(1-\frac{\square}{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}\right) \\
& =\tan ^{2} \theta\left(1-\frac{\sin ^{2} \theta}{1} \times \frac{\cos ^{2} \theta}{\square}\right) \\
& =\tan ^{2} \theta(1-\square) \\
& =\tan ^{2} \theta \text { X } \square \\
& =\text { R. H. S. }
\end{aligned}
$$

3. If $\tan \theta=\frac{7}{24}$ then To find value of $\cos \theta$ complete the activity given below.

Activity $\Rightarrow \sec ^{2} \theta=1+\square$(Fundamental tri. identity)

$$
\begin{aligned}
& \sec ^{2} \theta=1+\square \\
& \sec ^{2} \theta=1+\frac{\square}{576} \\
& \sec ^{2} \theta=\frac{\square}{576} \\
& \sec \theta=\square
\end{aligned}
$$

$$
\cos \theta=\square \quad \ldots \ldots \ldots \ldots \ldots \ldots . .\left(\cos \theta=\frac{1}{\sec \theta}\right)
$$

4. To prove $\cot \theta+\tan \theta=\operatorname{cosec} \theta X \sec \theta$. Complete the activity given below.

Activity \Rightarrow L.H.S. $=$ \square

$$
\begin{aligned}
& =\frac{\square}{\sin \theta}=\frac{\sin \theta}{\cos \theta} \\
& =\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\square} \\
& =\frac{1}{\sin \theta \cdot \cos \theta} \\
& =\frac{1}{\sin \theta} X \frac{1}{\square} \\
& =\square \\
& =\text { R. H. S. }
\end{aligned}
$$

Que.) 3 B). Solve the following questions : (3 marks each)

1. If $\sec \theta=\frac{41}{40}$ then find values of $\sin \theta, \cot \theta, \operatorname{cosec} \theta$.
2. If $5 \sec \theta-12 \operatorname{cosec} \theta=0$ then find values of $\sin \theta, \sec \theta$.
3. Prove that $\frac{\tan (90-\theta)+\cot (90-\theta)}{\operatorname{cosec} \theta}=\sec A$.
4. Prove that $\cot ^{2} \theta-\tan ^{2} \theta=\operatorname{cosec}^{2} \theta-\sec ^{2} \theta$.
5. Prove that $\frac{1+\sin \theta}{1-\sin \theta}=(\sec \theta+\tan \theta)^{2}$.
6. Prove that $\frac{\sin \theta}{\sec \theta+1}+\frac{\sin \theta}{\sec \theta-1}=2 \cot \theta$.
7. Prove that $\frac{\sec \mathrm{A}}{\tan \mathrm{A}+\cot \mathrm{A}}=\sin \mathrm{A}$.
8. Prove that $\frac{\sin \theta+\operatorname{cosec} \theta}{\sin \theta}=2+\cot ^{2} \theta$.
9. Prove that $\frac{\cot \mathrm{A}}{1-\cot \mathrm{A}}+\frac{\tan \mathrm{A}}{1-\tan \mathrm{A}}=-1$.
10. Prove that $\sqrt{\frac{1+\cos A}{1-\cos A}}=\operatorname{cosec} A+\cot A$.
11. Prove that $\sin ^{4} A-\cos ^{4} A=1-2 \cos ^{2} A$.
12. Prove that $\sec ^{2} \theta-\cos ^{2} \theta=\tan ^{2} \theta+\sin ^{2} \theta$.
13. Prove that $\operatorname{cosec} \theta-\cot \theta=\frac{\sin \theta}{1+\cos \theta}$.
14. In $\triangle \mathrm{ABC}, \cos \mathrm{C}=\frac{12}{13}$ and $\mathrm{BC}=24$ then $\mathrm{AC}=$?
15. Prove that $\frac{1+\sec \mathrm{A}}{\sec \mathrm{A}}=\frac{\sin ^{2} \mathrm{~A}}{1-\cos \mathrm{A}}$.
16. If $\sin A=\frac{3}{5}$ then show that $4 \tan A+3 \tan A=6 \cos A$
17. Prove that $\frac{1+\sin B}{\cos B}+\frac{\cos B}{1+\sin B}=2 \sec B$.

Que. 4 Solve the following questions: (Challenging questions, 4 marks each)

1. Prove that

$$
\sin ^{2} A \cdot \tan A+\cos ^{2} A \cdot \cot A+2 \sin A \cdot \cos A=\tan A+\cot A
$$

2. Prove that $\sec ^{2} A-\operatorname{cosec}^{2} A=\frac{2 \sin ^{2} A-1}{\sin ^{2} A \cdot \cos ^{2} A}$.
3. Prove that $\frac{\cot A+\operatorname{cosec} A-1}{\cot A-\operatorname{cosec} A+1}=\frac{1+\cos A}{\sin A}$.
4. Prove that $\sin \theta(1-\tan \theta)-\cos \theta(1-\cot \theta)=\operatorname{cosec} \theta-\sec \theta$
5. If $\cos \mathrm{A}=\frac{2 \sqrt{m}}{m+1}$ then Prove that $\operatorname{cosec} \mathrm{A}=\frac{m+1}{m-1}$.
6. If $\sec \mathrm{A}=x+\frac{1}{4 x}$ then show that $\sec \mathrm{A}+\tan \mathrm{A}=2 x$ or $\frac{1}{2 x}$.
7. In $\triangle \mathrm{ABC}, \sqrt{2} \mathrm{AC}=\mathrm{BC}, \sin \mathrm{A}=1, \sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}=2$ then $\angle \mathrm{A}=? \angle \mathrm{~B}=$? $\angle \mathrm{C}=$?
8. Prove that $\sin ^{6} \mathrm{~A}+\cos ^{6} \mathrm{~A}=1-3 \sin ^{2} \mathrm{~A} . \cos ^{2} \mathrm{~A}$.
9. Prove that $2\left(\sin ^{6} \mathrm{~A}+\cos ^{6} \mathrm{~A}\right)-3\left(\sin ^{4} \mathrm{~A}+\cos ^{4} \mathrm{~A}\right)+1=0$.
10. Prove that $\frac{\cot \mathrm{A}}{1-\tan \mathrm{A}}+\frac{\tan \mathrm{A}}{1-\cot \mathrm{A}}=1+\tan \mathrm{A}+\cot \mathrm{A}=\sec \mathrm{A} . \operatorname{cosec} \mathrm{A}$ $+1$

Que. 5 Solve the following questions: (Creative questions, 3

marks each)

1. If $3 \sin A+5 \cos A=5$ then show that $5 \sin A-3 \cos A= \pm 3$.
2. If $\cos \mathrm{A}+\cos ^{2} \mathrm{~A}=1$ then $\sin ^{2} \mathrm{~A}+\sin ^{4} \mathrm{~A}=$?
3. If $\operatorname{cosec} \mathrm{A}-\sin \mathrm{A}=\mathrm{p}$ आणि $\sec \mathrm{A}-\cos \mathrm{A}=\mathrm{q}$ then prove that

$$
\left(p^{2} q\right)^{\frac{2}{3}}+\left(p q^{2}\right)^{\frac{2}{3}}=1
$$

4. Show that $\tan 7^{0} \mathrm{X} \tan 23^{\circ} \mathrm{X} \tan 60^{\circ} \mathrm{X} \tan 67^{\circ} \mathrm{X} \tan 83^{\circ}=\sqrt{3}$.
5. If $\sin \theta+\cos \theta=\sqrt{3}$ then show that $\tan \theta+\cot \theta=1$.
6. If $\tan \theta-\sin ^{2} \theta=\cos ^{2} \theta$ then show that $\sin ^{2} \theta=\frac{1}{2}$.
7. Prove that

$$
\left(1-\cos ^{2} A\right) \cdot \sec ^{2} B+\tan ^{2} B\left(1-\sin ^{2} A\right)=\sin ^{2} A+\tan ^{2} B
$$

